• <input id="ycg2u"></input>
    <legend id="ycg2u"></legend>
    <strong id="ycg2u"><u id="ycg2u"></u></strong>
  • Enable Accessibility Enable Accessibility

    Ties promoting iPS cell technologies

    Organoid Medicine Project

    Norikazu Saiki


    "Ties"

    In what way should we bring back basic research findings to society? Norikazu Saeki, an expert in systems biology, uses iPS cell technologies to tie patients with researchers, tie basic research with clinical research and finally to tie academia with industry.

     

    Aiming to bring back our basic research findings to society

    Utilizing "miniature organs" to create and develop treatments for intractable diseases

    We, members of the T-CiRA Organoid Medicine Project led by Dr. Takanori Takabe who is the principal investigator, use miniature organs derived from iPS cells to develop new systems that represent what happens physiologically in the bodies of patients.
    I am focusing on blood vessels that connect organs, and I am trying to develop a new miniature organ technology that represents vasculature and blood vessel cells that are typically found in the liver. With the T-CiRA project, we would like to use this new technology to study how drugs cause adverse reactions affecting the liver, which is referred to as drug-induced liver injury (DILI), and create ways to prevent and treat DILI. 

    iPSC001_01.jpg

    "Who will use the technology?" "How will this technology affect society" We ask ourselves these very questions by working closely with patients.

    I started my research from a field known as systems biology which is an approach to understand behavior of the components of biological system based on mass data obtained using information technology, mathematics and experimental biology. Using such complex data, I have modeled the metabolism of cells in the human body on a computer. I then developed an interest as to how cells are differentiated into organs. I am now engaged in biomedical research using miniature organ technologies. I have used advanced technologies such as artificial intelligence (AI), DNA sequencers and iPS cells. However, I often felt that there was a significant time lag before the achievements of these technologies used by many researchers to give something back to society.

    iPSC001_02.jpg

    What basic researchers should be doing to give their achievements back to society and encourage their further use? This question has become increasing important to me as of late. Beside my basic research, I started with life sciences, information technology (IT) companies and startups to develop gene testing services, AI-based integrated databases, and AI-based interactive chatbot programs that stimulate consumer appetite and encourage behavioral changes based on information obtained from internet of things (IoT) technologies. These services are based on established technologies. Unlike basic research where a hypothesis is made and tested to clarify an unknown phenomenon or develop a new technology, these services have been designed by focusing on who will use the service, how and how often it will be used and what effects it will have on society. The same concept applies to the application of iPS cell technologies. Researchers need to think about how these technologies should be used in the future and how in fact the results could benefit society. I am very much attracted to these concepts.

    iPSC001_08.jpg

    My starting point

    (upper column)
    As a senior high student, I often wondered why different people learn sport techniques differently. I wanted to study sports science to teach sports to help everyone enjoy sport and study motor neuron development in children, and studied hard to prepare for my university examination.

    (lower column)
    Material for my first research presentation during first year of university. While I studied sports science and biology at university, I was really interested in a study at Masaru Tomita Laboratory in Keio University where computer science and biology were used.


    Ties with patients in an organic way


    iPS cell technology helps researchers tie with patients

    Patients and their family members who expect a lot from iPS cell technologies closely communicate with researchers and have participated in actual research projects by providing their cells. iPS cell technology is playing a role as a catalyst to tie researchers with patients in an organic manner. This is very impressive.

    These expectations and organic ties drive our research forward and remind us of the importance of our mission "to develop treatments that are truly beneficial for patients." It is also, of course, our mission to contribute to the health of patients. However, I am also very pleased when we can help patients act more proactively through our ties with patients.

    Experts tie together to ensure the safest use of individual iPS cell lines in the future

    The ultimate goal of iPS cell technologies is to provide personalized treatment to each individual patient who needs it. As one solution to achieve this goal, researchers at the CiRA Foundation of Kyoto University, are leading research to develop technologies that allow the use of cells obtained from a patient and to establish the patient's own iPS cell line at a low cost. In the future, more people will provide their cells for iPS cell creation, which will in turn require even more rigorous methods to maintain and use iPS cells properly.

    iPSC001_03.jpg

    iPS cells are not just objects. They contain a huge amount of personal information such as the genes and disease history of a particular donor. In order to use iPS cells in a safe and secure manner, we need to work together with diverse talent including not only medical researchers and physicians who use individual iPS cells but also information specialists who are experts in the management, maintenance and mining of big data, in addition to mechanical engineering specialists who develop devices to treat cells in a safe, prompt and stable manner. In order to help diverse talent tie together and find the best synergy of different technologies and ideas, researchers who have cross-sectional skills and experiences and ones who can play a hub role will become more important than ever. I strongly believe that we must get out of our silo and question conventional team building methods in order to address the challenges in front of us.

    iPSC001_04.jpg

    iPS cell technology in a futuristic city

    When iPS cell technology becomes a commodity, every person might well be able to receive his or her optimal healthcare solutions. I am interested in data-driven smart cities including automobility and telemedicine, of which many countries are trying to develop utilizing AI and IoT technologies. I believe it is very likely that iPS cell technologies will be used to provide important personal healthcare information, which will be essential for individual healthcare in the future. iPS cell technology might appear remote from a futuristic city. However, both technologies require a safe and secure information system and flexible digital platforms (so-called Urban OS) that help use an extremely large amount of personal information in a cross-sectional way. I feel there is a close affinity between the two. We very much need diverse expert teams to address these challenges. 

    iPSC001_05.jpg

    T-CiRA and me

    I actively communicate about how to "making smart" biology, i.e., making research achievements as available, affordable and accessible to all. I believe that the T-CiRA project is a smart platform that help move from basic research to new drug/treatment creation in an agile manner. 

    Research in pharmaceutical industry to develop new treatments in a more efficient manner

    This T-CiRA project provides me an opportunity to take on a significant challenge. As T-CiRA is a place of basic research for new treatment creations, we are able to work fully on our basic research to create new treatments for patients in efficient ways.  By collaborating with researchers from the pharmaceutical industry, we can better see the R&D process from the viewpoints of both science and business.

    iPSC001_06.jpg

    Of course, continuing laboratory research is important, yet researchers must also have a broad viewpoint to cover the increasingly diverse research frontier and return research results to society as promptly as possible. I hope that T-CiRA and other collaborative activities between academia and industry will assist young researchers like me learn in depth from diverse points of view and thereby drive future research.

    Ties of people involved in iPS research and ties of experts in bringing achievements to society are both important for the future of society.  I will keep these views with me throughout my research career and continue addressing challenges in and outside the framework of T-CiRA.

    To my future colleagues

    Make your vision and research visible

    iPSC001_07.jpg



    PROFILE

    iPSC001_profile.jpg

    Norikazu Saiki

    Project Assistant Professor at the Organ and Tissue Neogenesis Consortium, the Division of Advanced Multidisciplinary Research, Tokyo Medical and Dental University
    Doctor of Medicine. In 2018, joined the T-CiRA Organoid Medicine Project. Utilizing his diverse expertise in theoretical biology, information analysis and experiments, he is developing organoid platforms for new drug discoveries, personalized medicine and transplant medicine. His main areas of research include stem cell biology, blood and vascular biology and systems biology. He is also interested in the development of digital, AI and IoT based systems to assist with smart, affordable and accessible solutions in the life sciences.

    国产AV网站_中午文字幕av一区二区三区_性进入裸体视频_久久久久久精品免费免费直播